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Dissipative system with asymmetric interaction and Hopf bifurcation
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A dissipative system with asymmetric interaction, as well as the optimal velocity model, generally shows a
Hopf bifurcation concerned with the transition from homogeneous motion to the formation of nontrivial
patterns. We reveal that the origin of Hopf bifurcation in macroscopic phenomena is strongly related to
asymmetric interaction in a microscopic many-body system, using the continuum system derived from the

original discrete system.
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I. INTRODUCTION

Over the last few decades, physicists have shown growing
interest in complex systems as many-body systems of simple
components. The society formed by people, the collective
biomotion formed by organisms, the granular media formed
by particles, and the traffic flow formed by vehicles—these
are examples of complex systems. One of the most interest-
ing subjects is the pattern formation caused by cooperative
effects in many-body systems [1]. We focus on the formation
of a traffic jam of a vehicular flow and phenomena related to
the cluster formation of a particle flow [2].

As a mathematical model for describing such phenomena,
we investigate the optimal velocity model (the OV model),
which is first introduced as a model for a traffic flow in 1994
[3,4]. The model well reproduces actual data of highway
traffic [5]. From the physical point of view, the model is a
nonequilibrium dissipative system describing a one-
dimensional chain of interacting particles formulated by non-
linear equations. The interaction between particles in the OV
model is asymmetric, meaning that a particle interacts with
the particle in front in the direction of motion, not with the
particle behind. This interaction breaks the action-reaction
principle and the momentum conservation law is not pre-
served. The several interesting dynamical properties are
originated in the asymmetry of interactions [6]. The model
has two kinds of solutions: a homogeneous flow solution and
a moving-cluster solution. If a control parameter exceeds a
certain critical value, a homogeneous flow solution becomes
unstable and a stable moving-cluster solution appears. As a
model for traffic flow, a jam cluster emerges beyond the criti-
cal vehicle density.

The change in the stability from a homogeneous flow to a
cluster flow is caused by the collective effect in many-body
systems. The phenomenon is so called a dynamical phase
transition. Another property is a bifurcation in dynamical
systems. This property is an important characteristic in non-
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equilibrium dissipative systems of OV-type models. In many
numerical simulations, we observe the profile of a jam flow
solution as a kind of limit cycle in the phase space of head-
way and velocity [4]. The appearance of the profile indicates
that the transition in the OV model is a Hopf bifurcation [7].
However, there are few analytical studies on this issue
[8—11]. In this paper, we analytically show that the transition
between the solutions is a Hopf bifurcation, and that it origi-
nates from asymmetric interactions. For this purpose, we de-
rive the continuum system from the original OV model and
investigate the property of the transition, instead of the origi-
nal discrete system. This paper is organized as follows. We
first review the OV model briefly in Sec. II. Next, we derive
the continuum system and carry out a linear stability analysis
of the system and investigate the property of a Hopf bifur-
cation in Sec. III. In Sec. IV, we investigate the general
asymmetric interaction of dissipative systems of OV-type
models, and we prove that a Hopf bifurcation originates from
asymmetric interactions. Section V is devoted to the sum-
mary and discussion

II. BRIEF REVIEW OF OV MODEL

We briefly review the basic features of the OV model
[3,4]. The model describes a one-dimensional particle-
following system, where N particles move on a circuit with
the length L. We express the equation of motion for the nth
particle (n=1,2,...,N) as

i, =a{V(Ax,) — x,}, (1)

where x,, denotes the position of the nth particle and Ax,, is
the headway defined by Ax,=x,.,—x,. The overdot repre-
sents the time derivative. The parameter a is a sensitivity
constant (a>0). The function V(Ax,) is the so-called opti-
mal velocity function, which monotonically increases and
has an upper bound for Ax, — .

Equation (1) has a homogeneous flow solution expressed
as

x,(t) =bn + V(b)t + const, (2)

where b is an average distance expressed as b=L/N. By
linear stability analysis, the solution is unstable under the
condition that there exists a mode O=nw/N satisfying the
inequality [3]
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FIG. 1. Space-time plot of cluster formation of the OV model
with OV function as V(Ax)=tanh(Ax—2)+tanh 2 in N=100 on the
periodic boundary condition on a circuit. The vertical axis is the
location on the circuit. The horizontal axis is the time evolution.
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where V'(b) is the derivative of V at b. For a Fourier mode
satisfying Eq. (3), its eigenvalue for the coefficient of time is
real and positive, which blows up an amplitude of oscillation
and makes the trivial solution unstable.

The equality of Eq. (3) with 6—0 gives the critical con-
dition a=2V'(b) for the stability of the homogeneous flow
solution. The condition predicts the critical vehicle density
for given a. The change in the stability is a phase transition
in many-body systems. In the case a<<2V’(b), the solution
of the homogeneous flow is unstable and decays. Instead, the
moving-cluster solution emerges and becomes stable as in
Fig. 1. After relaxation, the cluster flow solution is stable. All
clusters are moving backward with the same velocity op-
posed to the direction of the particle motion.

We recognize the profile of cluster flow solution by the
trajectory of particles in the phase space of headway and
velocity (Ax,,x,) in Fig. 2. In the cluster flow solution, all
particles are moving along the specific closed curve, which is
a kind of limit cycle [4,6]. Figure 2 indicates that the transi-
tion can be understood as a bifurcation in dynamical sys-
tems. The profile like a limit cycle naturally reminds us a
Hopf bifurcation in dynamical systems. In the following sec-
tion, we deal with the transition for the change in the stabil-
ity from the viewpoint of dynamical systems.

III. CONTINUUM SYSTEM OF OV MODEL
AND HOPF BIFURCATION

We investigate the property of the bifurcation in the OV
model. From the result of numerical simulations, we expect
that the transition is a Hopf bifurcation. The transition is
caused by a long-wavelength mode of eigenvalue for the
linearized equation of motion. For the analysis of this mode,
the continuum system of the original model is more conve-
nient to treat.
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FIG. 2. The profile of a cluster flow solution. “Free” and “jam”
denote smoothly moving regions and jam clusters, respectively. All
vehicles move along the closed loop in the direction of arrow. A
dotted curve represents the OV function.

A. Continuum system

We derive a continuum system of the OV model as fol-
lows. First, we transform Eq. (1) to the equation for the
headway Ax, by subtracting x,,, from x, and rewrite the
equation using a deviation from the average headway dis-
tance b as a dynamical variable, r,=Ax,—b,

fn=a{v(rn+1+b)_V(rn+b)_’:n}- (4)

In this formula, the homogeneous flow solution (2) is trans-
lated to r,(¢)=0.

Next, we use the shift operator (exp%)f(n) =f(n+1) by
treating the index of a particle number n as the continuous
variable. We replace r,(r) with r(x, ), where x is the continu-
ous variable defined by x=>bn by taking the continuum limit
as N—oo, L—o, at fixed b=L/N.

Then, Eq. (4) is rewritten as

Pr X, d ar(x,
(9(t2 ! =a{<exp ba - 1>V[r(x,t) +b]- %},

)

We have derived the continuum system expressed by the
partial differential equation (PDE) [8], for the original OV
model formulated by the set of ordinary differential equa-
tions (ODEs) for many particles (1).

We investigate the linear stability of the trivial solution
r(x,1)=0 for Eq. (5), which corresponds to the homogeneous
flow solution of the original system. The linearized equation
for the small deviation from the trivial solution is

Pr(x,1)
ar

_ a{ VD) [rx + b.t) — r(e.)] - ’”S; ! )}, 6)

where V'(b) is the derivative of V at b. The solution of Eq.
(6) is obtained by Fourier transformation. The wave number
k takes continuous values in (—c0,0). The solution for the
mode O=kb is written as
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r(x,1) = e, (7)

where z=0—iw is the eigenvalue for each 6. The real part o
and the imaginary part o take real values. From Eq. (6), the
eigenvalue z satisfies

Z+az—aV'(b)(e?-1)=0 (8)

for each mode 6. Thus, o and w satisfy the following rela-
tions:

o?—w?=aV'(b)(cos 0-1) —ao, 9)

—20w=aV'(b)sin 0+ aw. (10)

From Egs. (9) and (10), we obtain the solutions o(6) and
w-(0) for 0 as

1 ,0
o(0)=——a*+ —= {a —8aV'(b)sin? 2
242

1
2¢
{ 0}1/2}1/2
a*+16a>V' (b)[4V'(b) — a]sin®*= ,

2
(11)
- ’ : 1 2 ’ . 2‘9
w+(0)= ¥ aV'(b)sin 0/’_5 a®—8aV’(b)sin 2
\!

12) 12
+{a4+ 16a2V'(b)[4V'(b)—a]sinzg} } .
(12)

We can obtain the stability condition for the trivial solution
of the continuum system by calculating o,.(6) =0 for (11)
[8], which mode 6 induces the instability and makes the am-
plitude blow up with time evolution. The obtained condition
provides just the same result (3) as the stability condition for
the homogeneous flow solution of the original discrete sys-
tem.

Here, we remark that the continuum system or the mac-
roscopic model corresponding to the original discrete system
(the many-particle system) of the OV model should be care-
fully derived in order to conserve the important properties—
the asymmetry of interaction in the discrete particles. This
property cannot be introduced by a naive continuum limit,
such as V(Ax,) — V(p(x)), where p(x) is a local density. If
one does such a crude approximation, he needs some modi-
fications to preserve the dynamical effect of the asymmetric
interaction in the original particle system [12,13]. However,
our derivation of the continuum system is straightforward
and the most faithful to the original OV model. So, the sta-
bility condition is reproduced correctly, and other investiga-
tions of the complex dynamical properties can be correctly
carried out.

B. Hopf Bifurcation in OV model

Now, we investigate the property of the bifurcation in the
OV model. We consider a as the control parameter for the
bifurcation. The critical sensitivity for a given b is denoted
by a.=2V'(b). For the proof of existence of Hopf bifurcation
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FIG. 3. The sketch of solutions o,(6), the real part of the eigen-
value z(#6). Solutions o,(6) for a given a denoted by o.,(6,a) in the
figure are on the vertical line of a. The curve f(6,a)=0 is drawn.
The solutions are positive in the shaded area. z(* 6,) for the mode
6, are complex conjugate pure imaginary.

in the OV model, we analyze each eigenvalue z(6) for a
mode @ in the continuum system.

We first remark that z(*6)=0(6) ¥ iw(6) are complex
conjugate eigenvalues. We can restrict #=0, because the
mode different in only the sign plays the same role in the
following investigation. And, it is enough to analyze the real
part of the eigenvalue z,=0,(6)—iw,(0) for >0 to study
the instability and the transition, because only o, has the
possibility to be positive for some 6, and the mode for such
0 contributes the instability and a bifurcation. For the pur-
pose of our analysis, we prepare f(6,a) defined as

HOa) =~ [a—-a, cos’(6/2)] _a-a_ & (13)

9
a, a, 4

where the approximate equality holds for small 6. The func-
tion f(6,a) is continuous and monotonically decreases in
terms of § and a. We can see easily that the sign of o,(6),
which is the real part of the eigenvalue z(6), is equivalent to
that of f(6,a) (see the Appendix).

In the case of a>a,, the sign of o,(6) is negative and
nonvanishing for any mode 6, which is easily seen by f(6,a).
Then, the trivial solution is stable and no Hopf bifurcation.

In the case of a<<a,, by the continuity and the monoto-
nicity of f(6,a), there exists a mode 6= 6, such that o, (6) is
negative for 6> 6, and positive for << 6,. Namely, o,(6,)
=0. The solution of the imaginary part w,(6,) satisfies Egs.
(9) and (10) with o=0. These relations are reduced to the
equation of w?, which has the positive solution wi:a(ac
—a). Then, the eigenvalue of the mode 6, is pure imaginary,
and the eigenvalues z(*6,) are complex conjugate pure
imaginary (Fig. 3). This means a Hopf bifurcation in the
mode 6, for a given a(<a,). For a mode 60< 6, o,(6) is
positive, which blows up an amplitude of oscillation and
makes the trivial solution unstable.
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For a(<a,)—a,, 6, decrease to zero and the region of
unstable modes < 6§, reduces to zero and the mode for Hopf
bifurcation vanishes. Thus, a=a, is the “critical” point for
existing a Hopf bifurcation. In this meaning, a,. can be iden-
tified as the “Hopf bifurcation point” for a given b. This
situation is a little bit different from a usual type of Hopf
bifurcation in dynamical systems, but it is curious and inter-
esting as a Hopf bifurcation in many-body systems.

As the critical point of the original discrete system is not
different from that of the continuum system, there exists the
Hopf bifurcation point a. for a given b in the original dis-
crete system. The direct investigation for a Hopf bifurcation
using the original many-particle system was previously stud-
ied by Gasser et al. [9]. We have provided a simple proof
using the continuum system. The proof can be applicable to
a dissipative system with more general asymmetric interac-
tion in the OV-type model to have a Hopf bifurcation.

IV. ASYMMETRIC INTERACTION
AND HOPF BIFURCATION

We have seen that the OV model has a Hopf bifurcation in
the previous section. We investigate the origin of Hopf bifur-
cation in the OV model. The model has the interaction
V(Ax,) describing that a particle interacts only with the par-
ticle in front in the direction of motion, meaning that the
interaction is asymmetric. We clarify that a Hopf bifurcation
generally occurs in the dissipative system with asymmetric
interactions in the type of the OV model.

We generalize the asymmetric interaction in the OV
model by introducing a term W(Ax,_;), which represents an
interaction with the particle behind as [14]

)En = a{ V(Axn) - W(Axn—l) - xn} (14)

If we take W(Ax)=V(Ax), Eq. (14) represents a dissipative
system of many particles with usual (namely, symmetric)
interactions, where the momentum conservation is preserved.
The system describes a one-dimensional chain of oscillators
with nonlinear interactions and viscosity term, for example.
We can compare a usual (symmetric) system with an asym-
metric system like the OV model for many aspects in dy-
namical properties [15].

We derive the corresponding continuum system to Eq.
(14) in the same way as that in the OV model,

L [
atz—a exXp o'l_x_ r+

J ar
—{l—exp(—ba)}W(r+b)—5}. (15)

Then, the real part o and the imaginary part w of the eigen-
value z=0—iw for each Fourier mode solution (7) of the
linearized equation of PDE (15) are satisfied in the following
relations:

= =a[V'(b)+ W (b)](cos 6-1)—ao, (16)
—20w=a(V'(b)—W'(b))sin 0+ aw. (17)

We obtain the solutions, the real part o.(6), and the imagi-
nary part w-(6) for 6 as
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1 1 (%
o (0) =- Ea + E{az —8alV'(b)+ W' (b)]sin25
\

+ {a4 +16a’[V'(b) + W' (b)J{4[V'(b) + W' (b)] - a}

: 20 2 2y U . 29 2 v
Xsin 5" 16=a“V'(b)W’ (b)sin ECOS > ,

(18)
w+(0) = F a[V'(b) — W (b)]sin 9/ %{cﬂ —8a[V'(b)
+W (b)]sinzg +1a*+16a°[V'(b) + W' (b)]
x{4[V'(b) + W' (b)] - a}sinzg

2 2y 1 : 20 2 e
—16a*V'(b)W'(b)sin ECOS 5 . (19)

The trivial solution is unstable for the mode @ satisfying the
condition [14]

20 dlV'(®)+ W b))
2 V() -W (B

(20)
We denote a“ as the critical sensitivity for a given b ex-
pressed as

_ AV - W B
=TV by + WD)

(21)

Now, we investigate the property of a Hopf bifurcation in
the dissipative system with a generalized asymmetric inter-
action. First, we consider the case of a symmetric interaction,
W(b)=V(b). Equation (17) or Eq. (19) obviously shows that
w(6)=0 is always satisfied for any 6. Then, the eigenvalue
z(0) has no imaginary part. Therefore, the system has no
Hopf bifurcation points.

Although, in the case of asymmetric interactions, W(b)
# V(b), the situation is different from that in the symmetric
case. For proof of Hopf bifurcation, we investigate the sign
of o, in Eq. (18) in the same way as in Sec. III B. For this
purpose we use again the function f(6,a) by replacing a,
with @ (see the Appendix),

F(6.a)=— [a-a. chz(ﬁ/Z)] _ Eic: a ? (22)
aC aC

The same process as that in the previous proof is followed.
There exists a mode 6, such that the sign of o,(6) changes in
the vicinity of 6, for a given a<a,. The eigenvalue z(6,) is
pure imaginary, which means a Hopf bifurcation. This situa-
tion is possible for W(b) # V(b) by seeing Egs. (16) and (17)
with 0=0. In this case the equations can be reduced to the
equation of ®?, which has the positive solution, as the same
as the case of the OV model. For a(<a,) — a,, the mode for
Hopf bifurcation vanishes. Thus, in this meaning a, is the
Hopf bifurcation point for a given b. And this phenomenon is
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FIG. 4. Profile of jam flow solution for various values of the
sensitivity a=1.0,1.5,1.9 with b=b"=2 in headway-velocity space
in the OV model. The OV function is chosen as V(Ax)=tanh(Ax
—2)+tanh 2. In this case, the Hopf bifurcation point is a.=2.

originated from the asymmetry of W(Ax,) and V(Ax,).

Consequently, a Hopf bifurcation can occur in dissipative
systems with asymmetric interactions. The OV model and a
generalized OV-type model are very simple systems for such
examples.

V. SUMMARY AND DISCUSSION

Let us summarize the studies in this paper. We investigate
the property of transition from a homogeneous flow solution
to a moving-cluster solution in the OV model. For this pur-
pose, we derive the continuum system from the original dis-
crete system of particles. Our formula of the continuum sys-
tem is well expressed preserving the dynamical properties of
the original particle system.

We prove analytically that the transition of the OV model
is a Hopf bifurcation. Moreover, we investigate dissipative
systems with asymmetric interactions generalized from the
OV model. The property of transition in such systems is also
a Hopf bifurcation, which originates from asymmetric inter-
actions between particles.

We overview our next studies as follows. In dynamical
systems, a Hopf bifurcation usually leads to a limit cycle.
Actually, in the OV model the moving-cluster solution is
identified as a kind of limit cycles in the headway-velocity
space, as shown in Fig. 2. The size of the limit cycle depends
on the parameter a as shown in Fig. 4 [5]. The limit cycle
shrinks as a — a_. for b*, where b=b" is the inflection point of
the OV function, V"(b*)=0. We perform a nonlinear analysis
to investigate the dynamical property of the limit cycle,
which determines the details of transition in the Hopf bifur-
cation. Actually, whether its type is supercritical or subcriti-
cal depends on b.

For this purpose, we introduce a dynamical system under
the assumption of a traveling wave, r(x,f)=r(x—ct), in a
continuum system (5), where c is the velocity of a moving
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cluster corresponding to the limit cycle depending on a.
Then, the dynamical system expressed in a PDE (5) is re-
written to an ODE for a traveling wave. In order to define the
derived ODE system, we should determine the velocity c(a)
of a moving cluster, which can be evaluated by the property
of limit cycles in the original discrete system of particles in
the OV model. First, we show that the Hopf bifurcation point
of the ODE system is just the Hopf bifurcation point of the
PDE system studied in this paper. And, we can determine the
velocity of the cluster c¢(a,) at the Hopf bifurcation point.
Then, we carry out the analysis by expansion in terms of
o(a—a,) for a given b in order to construct the normal form
to investigate the limit cycle.

There are many nonequilibrium dissipative phenomena,
for example, Belousov-Zhabotinsky reactions [16] and
Rayleigh-Bénard convections [17]. They are usually de-
scribed by macroscopic models expressed in PDE and show
Hopf bifurcations, as well as the continuum system for the
OV model. We expect the possibility that some class of a
Hopf bifurcation observed in a macroscopic phenomenon in-
dicates the existence of asymmetric interaction in an under-
lying microscopic nonequilibrium dissipative system.
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APPENDIX: EQUIVALENCE OF THE SIGN
BETWEEN o.(60) AND f(0,a)

(11), by defining A, B as

1 1 [A+VA?+B?
——a+-\|———=0.
272 2

Inequality (A1) is equivalent to the following inequality:

In Eq. A=ad’

as

o,(6) = (A1)

o 0
VA’+B*=d>+8a sinzg. (A2)

As both sides of inequality (A2) are positive, the square of
each side holds the same inequality, which is equivalent to

1 : 0 9 ? 3y, : 26
8aV (a)smzcosi = 32a’V'(b)sin 2 (A3)

Then, we obtain that o,(6) 20 is equivalent to

0
cos’= = a .
2 2V'(b)

We define f(6,a)=cos® §/2—a/2V'(b), with a.=2V'(b).
Thus, o.(6) 20 is equivalent to f(6,a)=0.

(A4)
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For the proof in the case of a general asymmetric interac-
tion, we redefine f(0,a) as follows. In Eq. (18), by defining
A, B as A=da’-8a[V'(b)+W'(b)]sin*2, B=8a[V'(a)
-w (b)]singcosg, we can write down an inequality in the
same form as in Eq. (Al). Then, in the same way we obtain
that ,(6) 20 is equivalent to
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alV'(b) + W'(b)]
2V (D) - W' (D)

0
SZE = (A5)

Then, we redefine f(6,a) by using a expressed as Eq. (21).
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